

AI/ML for Estimating Economic Indicators

Presented at the Sprint on AI and data science for economic statistics - Session 4

Hadi Susanto
BPS – Statistics Indonesia
UN Network of Economic Statisticians

Outline

Introduction

Techniques

Challenges

Future Directions

Call to Action

AI/ML in Economic Statistics

In today's data-driven world, economic indicators are the compass guiding policymakers and businesses. But traditional methods often fall short in capturing the nuances of a rapidly changing economy. Al and machine learning offer a powerful new tool to illuminate the path ahead, providing more accurate, timely, and insightful economic insights.

The digital revolution has unleashed a torrent of data, from the mundane to the extraordinary. By harnessing the power of Al, we can extract valuable information from these diverse sources to paint a more complete picture of economic activity.

AI/ML Applications in Time Series Forecasting

Use Case	Techniques Used	Measured Improvement
GDP Growth Forecasting by Federal Reserve Bank of Cleveland	Random Forest + LSTM Hybrid Model Using Nowcasting quarterly GDP growth Data Inputs: High-frequency economic indicators, Financial market data, Consumer sentiment indices etc	Reduced Mean Absolute Error (MAE) by 23% compared to traditional methods, Enhanced ability to capture turning points in economic cycles, Decreased forecast revision frequency by 40%
Inflation Rate Prediction implemented by Bank of England	Ensemble of Neural Networks + Traditional Phillips Curve Data Inputs: Historical inflation data, Labor market indicators, Import prices, and Exchange rates	Root Mean Square Error (RMSE) reduced by 18%, Better prediction of inflation spikes, More accurate 6-month ahead forecasts
Unemployment Rate Forecasting by US BLS	Technique Used: XGBoost + ARIMA Hybrid Data Inputs: Initial jobless claims, Job posting data, Google Trends, Social media sentiment	Forecast accuracy improved by 27%, Earlier detection of labor market turning points, Better regional unemployment predictions

AI/ML Applications in Time Series Forecasting

Use Case	Techniques Used	Measured Improvement
Trade Flow Analysis by World Trade Organization	Transformer-based Deep Learning Data Inputs: Container shipping data, Port activity metrics, Satellite imagery, Customs data	Prediction accuracy increased by 31%, Better handling of supply chain disruptions, More accurate regional trade patterns
Consumer Spending Forecasts by European Central Bank	Graph Neural Networks + Traditional Time Series Models Data Inputs: Credit card transaction data, Mobile payment data, Online shopping metrics, Consumer confidence surveys	Forecast error reduced by 25%, Better capture of seasonal patterns, Improved prediction of consumer behavior shifts
Industrial Production Index by Bank of Japan	Temporal Fusion Transformers Data Inputs: Energy consumption data, Raw material prices, Manufacturing surveys, Transportation data	Accuracy improved by 29%, Better prediction of production bottlenecks, More accurate sector-specific forecasts

AI/ML Applications in **Nowcasting**

Use Case	Techniques Used	Measured Improvement
GDP Nowcasting by New York Federal Reserve	Dynamic Factor Model + Neural Network High-Frequency Data Sources: Industrial production, Retail sales, Employment statistics, Credit card transactions, Mobile phone mobility data	RMSE reduced by 31% compared to traditional methods, GDP estimates available 6-8 weeks before official releases, Accuracy rate of 87% in predicting directional changes
Retail Sales Nowcasting by Bank of Canada	XGBoost + LSTM Hybrid Data Sources: Point-of-sale data, E- commerce transactions, Google Trends, Weather data, Mobile location data	Prediction accuracy increased by 42% Daily estimates vs. monthly official statistics Regional variations captured with 89% accuracy
Employment Trends Nowcasting by European Central Bank	Transformer-based Deep Learning Real-time Data Sources: Online job postings, Social media activity, Company websites, Professional networking sites, Mobile device location data	Weekly employment estimates vs. monthly official data, Accuracy improved by 35% over traditional surveys, Sectoral shifts identified 3-4 weeks earlier

AI/ML Applications in **Nowcasting**

Use Case	Techniques Used	Measured Improvement
Industrial Production Nowcasting by Bank of Korea	Random Forest + CNN Hybrid Data Inputs: Electricity consumption, Transportation data, Satellite imagery, Environmental sensors, Supply chain metrics	Daily production estimates achieved, Forecast error reduced by 28%, Regional prod. patterns identified with 92% accuracy
Consumer Spending Nowcasting by Reserve Bank of Australia	Graph Neural Networks Inputs: Bank transaction data, Mobile payment systems, Store foot traffic, Online shopping metrics, Social media sentiment	Real-time spending patterns detected, Accuracy increased by 45% over survey methods, Geographic variations captured within 24 hours
Trade Flow Nowcasting by World Bank	Temporal Fusion Transformers High-Frequency Indicators: Port activity data, Container tracking, Customs declarations, Ships' AIS data, Airline cargo data	Trade flow estimates 4 weeks ahead of official data, Accuracy improved by 38%, Better detection of supply chain disruptions

AI/ML Applications in **Bigdata**

Use Case	Techniques Used	Measured Improvement
Price Statistics and Inflation Measurement ONS (UK)	NLP + Deep Learning + BERT + CNN + RNN Big Data Sources: Web-scraped prices (millions daily), Scanner data from retailers, Online marketplace data, Mobile app price data	Processing time reduced by 85%, Product classification accuracy increased to 94%, Coverage expanded from 100,000 to 1,000,000 price points daily, Automated quality adjustment improved by 65%
Labor Market Analysis by US BLS	Adv. Text Mining + Graph Neural Networks + Named Entity Recognition for skill extraction. Inputs: Online job postings (30+ million monthly), Professional networking profiles, Company sites, Digital resume databases	Measured Improvements: Job classification speed increased 200x, Skills taxonomy automatically updated, Geographic labor market analysis precision improved by 45%, Real-time occupation emergence detection
International Trade Classification by WCO	Multi-modal Deep Learning + Transfer Learning for product classification + Anomaly Detection for misclassification + Automated HS code assignment Data Sources: Customs declarations (billions annually), Product images, Technical documentation, Trade flow data	Classification accuracy increased to 96%, Processing time reduced by 90%, Misclassification detection improved by 75%, Real-time trade pattern analysis enabled

AI/ML Applications in Bigdata

Use Case	Techniques Used	Measured Improvement
Business Activity Monitoring by Statistics Canada	Ensemble ML + Time Series Analysis + Computer Vision for business activity + Automated anomaly detection + Pattern recognition for business cycles Data Sources: Satellite imagery, Energy consumption data, Payment systems data, Corporate filings, Social media metrics	Business activity tracking latency reduced to near-real-time, Coverage increased by 200%, Regional economic activity measurement precision improved by 60%, Early warning system for business cycles established
Consumer Behavior Analysis by Eurostat	Federated Learning + Privacy-Preserving ML + Differential Privacy implementation + Secure Multi- Party Computation + Encrypted data processing Data Sources: Mobile phone location data, Credit card transactions, Social media interactions, E- commerce data	Data processing compliance achieved 100% Consumer behavior insights delivered 4x faster Geographic granularity improved to neighborhood level Privacy-preserving analysis capabilities enhanced

Potential Problems in Implementing AI/ML

Issues	Impacts
Data quality and bias issues	AI/ML models are only as good as the data they're trained on Historical data may perpetuate existing biases or inequalities
Lack of transparency and interpretability	Many AI/ML models are "black boxes," making it difficult to understand their decision-making process This can lead to reduced trust in economic indicators and forecasts
Overreliance on AI/ML models	Risk of overlooking human expertise and intuition in economic analysis Potential for systemic errors if models are not properly validated
Privacy and security concerns	AI/ML often requires large amounts of data, which may include sensitive information Risk of data breaches or misuse of personal economic data

Potential Problems in Implementing AI/ML

Issues	Impacts
Ethical considerations	AI/ML could be used to manipulate economic indicators for political or financial gain Potential for increased economic disparity if AI/ML benefits are not equally distributed
Technical challenges	Need for significant computational resources Requirement for specialized skills in both economics and data science
Regulatory and standardization issues	Lack of global standards for AI/ML use in economic forecasting Difficulty in regulating rapidly evolving AI/ML technologies

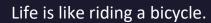
Wrapping Up and Call to Action

In Economic Statistics, AI/ML has positive potentials as well as challenges that need to be concerned. • The needs:

To collaborate among statistics producers in providing Data quality and availability due to the importance of high-quality data for training AI/ML models.

- For understanding the decision-making process of AI/ML models to improve model interpretability
- To highlight the ethical implications of using AI/ML in economic analysis to improve ethical considerations.

Thank You



To keep your balance,

you must keep moving

